Each question is of equal Marks (10 Marks)

Q. 1	Find the Fourier Series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$.
Q. 2	Expand $f(x)=x \sin x$ as a Fourier series in the interval $0<x<2 \pi$.
Q. 3	Find the Fourier series of $f(x)=2 x-x^{2}$ in the interval $(0,3)$. Hence deduce that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots=\frac{\pi^{2}}{12}$.
Q. 4	Find the Fourier series of the function $f(x)=\left\{\begin{array}{lc}x^{2} & 0 \leq x \leq \pi \\ -x^{2} & -\pi \leq x \leq 0\end{array}\right.$.
Q. 5	Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}\pi x & 0<x<1 \\ 0 & x=1 \\ \pi(x-2) & 1<x<2\end{array}\right.$. Hence show that $\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}$.
Q. 6	Find the Fourier series of $f(x)=x^{2}$ in the interval $0<x<a, f(x+a)=f(x)$.
Q. 7	If $f(x)=\|\cos x\|$, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$, $f(x+2 \pi)=f(x)$.
Q. 8	For the function $f(x)$ defined by $f(x)=\|x\|$, in the interval $(-\pi, \pi)$. Obtain the Fourier series. Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$.
Q. 9	Given $f(x)=\left\{\begin{array}{cc}-x+1 & -\pi \leq x \leq 0 \\ x+1 & 0 \leq x \leq \pi\end{array}\right.$. Is the function even of odd ? Find the Fourier series for $f(x)$ and deduce the value of $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$.
Q. 10	Find the Fourier series of the periodic function $f(x) ; f(x)=-k$ when $-\pi<x<0$ and $f(x)=k$ when $0<x<\pi$, and $f(x+2 \pi)=f(x)$.
Q. 11	Half range sine and cosine series of $f(x)=x(\pi-x)$ in (0, π)
Q. 12	Find the Fourier series for the function $f(x)=\left\{\begin{array}{l}\pi x, 0<x<1 \\ \pi(x-2), 1<x<2\end{array}\right.$
Q. 13	Find the Fourier series for $\mathrm{f}(\mathrm{x})$ defined by $\mathrm{f}(\mathrm{x})=x+\frac{x^{2}}{4}$ when $-\pi<\mathrm{x}<\pi$ and $f(x+2 \pi)=f(x)$ and hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots . .=\frac{\pi^{2}}{12}$

B.E. SEM - 3 (CE/IT)

Question Bank
Advance Maths
Each question is of equal Marks (10 Marks)

Q. 14	Find the Fourier series for the function $f(x)=\left\{\begin{array}{l}x ; 0<x<1 \\ 0 ; 1<x<2\end{array}\right.$.
Q. 15	$\text { If } \begin{aligned} f(x) & =x \text { in } 0<x<\frac{\pi}{2} \\ & =\pi-x \text { in } \frac{\pi}{2}<x<\frac{3 \pi}{2} \\ & =x-2 \pi \text { in } \frac{3 \pi}{2}<x<2 \pi \end{aligned}$ Prove that $\mathrm{f}(\mathrm{x})=\frac{4}{\pi}\left\{\frac{\sin x}{1^{2}}-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}-\right\}$
Q. 16	If $\mathrm{f}(\mathrm{x})=\frac{x}{l} \quad$ when $0<\mathrm{x}<1$ $=\frac{2 l-x}{l} \quad \text { when } \mathrm{I}<\mathrm{x}<21$ Prove that $\mathrm{f}(\mathrm{x}) \frac{1}{2}-\frac{4}{\pi^{2}}\left(\frac{1}{I^{2}} \cos \frac{\pi x}{l}+\frac{1}{3^{2}} \cos \frac{3 \pi x}{l}+\frac{1}{5^{2}} \cos \frac{5 \pi x}{l}+\ldots \ldots.\right)$
Q. 17	When x lies between $\pm \pi$ and p is not an integer, prove that $\sin \mathrm{px}=\frac{2}{\pi} \sin p \pi\left(\frac{\sin x}{1^{2}-p^{2}}-\frac{2 \sin 2 x}{2^{2}-p^{2}}+\frac{3 \sin 3 x}{3^{2}-p^{2}}-\ldots \ldots \ldots .\right)$
Q. 18	Find the Fourier series for the function $f(x)=e^{a x}$ in $(-l, l)$
Q. 19	Half range sine and cosine series of $f(x)=2 x-1$ in (0,1)
Q. 20	Half range sine and cosine series of x^{2} in $(0, \pi)$
Q. 21	Find Half range sine and cosine series for $f(x)=(x-1)^{2}$ in $(0,1)$
Q. 22	Attempt the following.

Each question is of equal Marks (10 Marks)

	If $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$ find A^{3} and A^{-1} using Cayley Hamilton Theorem. Show that the matrix $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary.
Q. 23	Attempt the following. Using Cayley-Hamilton theorem, find the inverse of $\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]$. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $A^{2}-5 A+7 I=0$, Where I is a unit matrix of second order.
Q. 24	Attempt the following. Define Hermitian matrix. If $A=\left[\begin{array}{ccc}2+i & 3 & -1+3 i \\ -5 & i & 4-2 i\end{array}\right]$ show that $A A^{*}$ is a Hermitian matrix. Using Gauss -Jordan Method, find the inverse of $\left[\begin{array}{lll}2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2\end{array}\right]$.
Q. 25	Find the eigenvalues \& eigenvectors of the following matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$.

Each question is of equal Marks (10 Marks)

Q. 26	Find the eigenvalues \& eigenvectors of the following matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
Q. 27	Attempt the following. Find A^{-1} by Gauss Jordan Method, where $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$. Find characteristic equation ,eigen value and eigen vectors of matrix A ifA= $\left[\begin{array}{lll} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{array}\right] .$
Q. 28	If $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ find A^{-1} using Cayley Hamilton Theorem.
Q. 29	If $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 3\end{array}\right]$ find A^{-1} using Cayley Hamilton Theorem.
Q. 30	Verify cayley-Hamilton theorem for the matrix A, where $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$

Each question is of equal Marks (10 Marks)

Q. 31	Verify cayley-Hamilton theorem for the matrix A, where $A=\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$
Q. 32	Verify cayley-Hamilton theorem for the matrix A, where $A=\left[\begin{array}{lll}3 & 2 & 4 \\ 4 & 3 & 2 \\ 2 & 4 & 3\end{array}\right]$
Q. 33	Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
Q. 34	Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
Q. 35	Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right]$
Q. 36	Attempt the following. Prove that the matrix $A=\left[\begin{array}{ll}\frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i)\end{array}\right]$ ia unitary and find A^{-1}. Show that $A=\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ is a Hermitian matrix.

Each question is of equal Marks (10 Marks)

Q. 37	Attempt the following. Show that the matrix $A=\left[\begin{array}{cc}\alpha+i \gamma & -\beta+i \delta \\ \beta+i \delta & \alpha-i \gamma\end{array}\right]$ is unitary matrix, if $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1$.
Q. 38	Show that every square matrix can be uniquely expressed as $P+i Q$, where P and Q are Hermitian matrices.
Q. 39	Solve the following equations : (a) $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$ (b) $\left(D^{2}+D\right) y=x^{2}+2 x+4$
Q. 40	Solve the following equations: (a) $\left(D^{2}+1\right) y=x^{2} \cos x$ (b) $\left(D^{2}+1\right) y=e^{2 x}+\cosh 2 x+x^{3}$
Q. 41	Solve the following equations : (a) $\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos ^{2} x$ (b) $\left(D^{2}+2\right) y=e^{-2 x}+\cos 3 x+x^{2}$
Q. 42	Solve the following equations : (a) $\left(D^{2}+2 D+1\right) y=x e^{x} \sin x$ (b) $\left(D^{2}-9\right) y=e^{3 x} \cos 2 x$
Q. 43	Solve the following equations : (a) $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$ (b) $\left(D^{3}+8\right) y=x^{4}+2 x+1$
Q. 44	Solve the following equations : (a) $\left(D^{2}-1\right) y=x \sin 3 x+\cos x$ (b) $\left(D^{2}-4 D+4\right) y=2 e^{x}+\cos 2 x+x^{3}$
Q. 45	Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\log x)$.
Q. 46	Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+y=((\log x) \sin (\log x)+1) / x$

B.E. SEM - 3 (CE/IT)

Question Bank
Advance Maths
Each question is of equal Marks (10 Marks)

Q. 47	Solve: $(3 x+2) \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$.
Q. 48	Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\log x)$.
Q. 49	Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{2}+2 \log x$.
Q. 50	Solve by using method of variation of parameters: $\frac{d^{2} y}{d x^{2}}+y=\sec x$.
Q. 51	Solve by using method of variation of parameters: $\frac{d^{2} y}{d x^{2}}+y=\tan x$.
Q. 52	Solve by using method of variation of parameters: $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{x} \sin x$
Q. 53	The charge q on a plate of a condenser C is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=E \sin p t$ the circuit is tuned to resonance so that $p^{2}=\frac{1}{L C}$ if initially the current i and charge q be zero show that for small value of $\frac{R}{L}$,the current in the circuit at time t is given by $\left(\frac{E t}{2 L}\right) \sin p t$.
Q. 54	Solve the following simultaneous equations: $\begin{aligned} & D x+y=\sin t \\ & D y+x=\cos t \end{aligned} ; \quad \text { where } \mathrm{D}=\frac{d}{d t}$ given that when $\mathrm{t}=0, \mathrm{x}=1$ and $\mathrm{y}=0$.
Q. 55	Solve the following simultaneous equations:

B.E. SEM - 3 (CE/IT)

Question Bank
Advance Maths
Each question is of equal Marks (10 Marks)

Q. 56	Form the partial differential equation of following: (a) $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ (b) $z=f(x+c t)+g(x-c t)$
Q. 57	Form the partial differential equation of following: (a) $2 z=a^{2} x^{2}+b^{2} y^{2}$ (b) $z=x+y+f(x y)$
Q. 58	Form the partial differential equation of following: (a) $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$ (b) $F\left(x y+z^{2}, x+y+z\right)=0$
Q. 59	Solve following partial differential equations : (a) $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$ (b) $x(y-z) p+y(z-x) q=z(x-y)$
Q. 60	Solve following partial differential equations : (a) $p y+q x=p q$ (b) $z=p x+q y+2 \sqrt{p q}$
Q. 61	Solve following partial differential equations : (a) $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\sin x \cos y+x y$ (b) $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\cos x \cos 2 y$
Q. 62	Solve following partial differential equations : (a) $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=e^{x+4 y}$ (b) $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=x^{3}+e^{x+2 y}$
Q. 63	(a) Solve: $\frac{\partial^{2} z}{\partial x \partial y}=e^{-y} \cos x$, given that $\mathrm{z}=0$ when $\mathrm{y}=0$ and $\frac{\partial z}{\partial y}=0$ when $\mathrm{x}=0$ (b) Solve: $\frac{\partial^{2} z}{\partial x^{2}}=z$ given that $z=e^{y}$ and $\frac{\partial z}{\partial x}=e^{-y}$ when $x=0$
Q. 64	Solve: $\frac{\partial z}{\partial x}=2 \frac{\partial z}{\partial y}+z$ where $z(x, 0)=8 \mathrm{e}^{-5 \mathrm{x}}$ using method of separation of variables.
Q. 65	Solve: $3 \frac{\partial z}{\partial x}+2 \frac{\partial z}{\partial y}=0$, where $z(x, 0)=4 e^{-x}$ by using method of separation of

Each question is of equal Marks (10 Marks)

	variables.
Q. 66	Solve: $\frac{\partial z}{\partial x}=4 \frac{\partial z}{\partial y}$ where $z(0, y)=8 e^{-3 y}$ using method of separation of variables.
Q. 67	Find the series solution of the differential equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$
Q. 68	Solve the following equation in power series $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$
Q. 69	Solve in series in differential equation $\frac{d^{2} y}{d x^{2}}+x y=0$
Q. 70	Solve in series in differential equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0$
Q. 71	solve in series the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=0$
Q. 72	Attempt the following 1) Derive Cauchy -Riemann equations for complex function $w=f(z)$ in polar form. 2) Define harmonic function, Show that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and determine its conjugate function.
Q. 73	Attempt the following 1) Derive Cauchy-Rieman equation for a complex function $W=f(z)$ In polar form . Hence deduce that $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$. 2) If $w=u+i v$ represent the complex potential function for an electric field and $u=3 x^{2} y-y^{3}$, determine the function v.
Q. 74	Attempt the following 1) If $f(z)$ is analytic function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$ 2) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $(i) y=x(i i) y=x^{2}$
Q. 75	Attempt the following 1) Find the image of infinite strip $\frac{1}{4} \leq y \leq \frac{1}{2}$ under the transformation $w=\frac{1}{z}$ also show the region graphically.

Each question is of equal Marks (10 Marks)

	2) Define line integral .Evaluate $\int_{0}^{3+i} z^{2} d z$ along (i) the line $y=\frac{x}{3}$; (ii) the parabola $x=3 y^{2}$
Q. 76	Attempt the following 1) Define bilinear transformation, Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle onto the straight line $4 u+3=0$ 2) State Cauchy integral theorem and Cauchy integral formula. Evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z \quad$, where $c:\|z\|=3$
Q. 77	Attempt the following 1) Determine the analytic function whose real part is $u=e^{-x}(x \sin y-y \cos x)$. 2) Find the Bi-linear transformation, which maps the points $z=-1, i, 1$ into the points $w=1, i,-1$.
Q. 78	Attempt the following 1) Find the Bi-linear transformation which maps the points $z=1, i,-i$ into the Points $w=0,1, \infty$. 2) Use Cauchy's integral formula to evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$, where C is the circle $\|z\|=2$.
Q. 79	Attempt the following 1) Prove that $f(z)=e^{2 z}$ is analytic every in the plane and find its derivative. 2) Find the image of $\|z-2 i\|=2$ under the mapping $w=\frac{1}{z}$
Q. 80	Attempt the following 1) Evaluate $\int_{1-i}^{2+3 i}\left(z^{2}+z\right) d z$ along the line joining the points $(1,-1)$ and $(2,3)$. 2) Evaluate $\oint_{C} \frac{2 z+1}{z^{2}+z} d z$; where C is $\|z\|=\frac{1}{2}$.
Q. 81	Attempt the following 1) If $w=u+i v$ represent the complex potential function for an electric field and $u=3 x^{2} y-y^{3}$, determine the function v.

B.E. SEM - 3 (CE/IT)

Question Bank
Advance Maths
Each question is of equal Marks (10 Marks)

	2) State the Residue theorem and evaluate $\int_{C} \frac{2 z+1}{(2 z-1)^{2}} d z$, where C is the circle $\|z\|=1$.
Q. 82	Attempt the following 1) Prove that $f(z)=e^{2 z}$ is analytic every in the plane and find its derivative. 2) Expand $f(z)=\frac{z}{(z+1)(z+2)}$ about $z=-2$.
Q. 83	Attempt the following 1) Evaluate $\int_{0}^{3+i} z^{2} d z$ along (i) the line $y=\frac{x}{3}$ (ii) the parabola $x=3 y^{2}$ 2) Find the image of the upper half plane under the transformation $w=\frac{z}{i-z}$.
Q. 84	Attempt the following 1) Find the Bi -linear transformation which maps the points $z=1, i,-i$ into the Points $w=0,1, \infty$. 2) Determine the analytic function whose real part is $y+e^{x} \cos y$.
Q. 85	Attempt the following 1) Evaluate $\int_{C} \frac{z^{2}+1}{z(2 z+1)} d z$ where C is $\|z\|=1$. 2) Under the transformation $w=\frac{1}{z}$ find the image of $x^{2}-y^{2}=1$.
Q. 86	Attempt the following 1) Find the analytic function whose imaginary part is $e^{x} \sin y$ 2) Under the transformation $w=\frac{1}{z}$ find the image of $\|z-2 i\|=2$.
Q. 87	Attempt the following 1) Evaluate $\int_{C} \frac{z^{2}+1}{z(2 z+1)} d z$ where C is $\|z\|=1$. 2) Under the transformation, $w=\frac{1}{z}$ find the image of $x^{2}-y^{2}=1$.
Q. 88	Evaluate: (i) $\int_{c} \frac{e^{2 z}}{(z+1)^{4}} d z$; where $c:\|z\|=4$

Each question is of equal Marks (10 Marks)
(ii) $\int_{c} \frac{e^{z}}{(z+1)^{4}(z-2)} d z$; where $c:|z-1|=3$

