Q.1	Find the Fourier Series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.
Q.2	Expand $f(x) = x \sin x$ as a Fourier series in the interval $0 < x < 2\pi$.
Q.3	Find the Fourier series of $f(x) = 2x - x^2$ in the interval (0,3). Hence deduce that
	$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}.$
Q.4	Find the Fourier series of the function $f(x) = \begin{cases} x^2 & 0 \le x \le \pi \\ -x^2 & -\pi \le x \le 0 \end{cases}$.
Q.5	$\begin{pmatrix} \pi x & 0 \le x \le 1 \end{pmatrix}$
	Find the Fourier series of the function $f(x) = \begin{cases} 0 & x = 1 \\ \pi(x-2) & 1 < x < 2 \end{cases}$. Hence show that
	$\begin{bmatrix} \pi(x-2) & 1 < x < 2 \end{bmatrix}$
	$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$
Q.6	Find the Fourier series of $f(x) = x^2$ in the interval $0 < x < a$, $f(x+a) = f(x)$.
Q.7	If $f(x) = \cos x $, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$,
	$f(x+2\pi) = f(x).$
Q.8	For the function $f(x)$ defined by $f(x) = x $, in the interval $(-\pi, \pi)$. Obtain the
	Fourier series. Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.
Q.9	Given $f(x) = \begin{cases} -x+1 & -\pi \le x \le 0 \\ x+1 & 0 \le x \le \pi \end{cases}$. Is the function even of odd ? Find the Fourier
	series for $f(x)$ and deduce the value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
Q.10	Find the Fourier series of the periodic function $f(x)$; $f(x) = -k$ when $-\pi < x < 0$
0.11	and $f(x) = k$ when $0 < x < \pi$, and $f(x+2\pi) = f(x)$.
Q.11	Half range sine and cosine series of $f(x) = x(\pi - x)$ in $(0, \pi)$
Q.12	Find the Fourier series for the function $f(x) = \begin{cases} \pi x, 0 < x < 1 \\ \pi (x-2), 1 < x < 2 \end{cases}$
Q.13	Find the Fourier series for f(x) defined by f(x) = $x + \frac{x^2}{4}$ when $-\pi < x < \pi$ and
	f(x + 2 π) = f(x) and hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$

Find the Fourier series for the function $f(x) = \begin{cases} x; 0 < x < 1 \\ 0; 1 < x < 2 \end{cases}$.
If $f(x) = x \text{ in } 0 < x < \frac{\pi}{2}$
$= \pi - x \text{ in } \frac{\pi}{2} < x < \frac{3\pi}{2}$
$= x - 2\pi \text{ in } \frac{3\pi}{2} < x < 2\pi$
Prove that f(x) = $\frac{4}{\pi} \left\{ \frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \right\}$
If $f(x) = \frac{x}{l}$ when $0 < x < l$
$=\frac{2l-x}{l} \qquad \text{when } l < x < 2l$
Prove that f(x) $\frac{1}{2} - \frac{4}{\pi^2} \left(\frac{1}{I^2} \cos \frac{\pi x}{l} + \frac{1}{3^2} \cos \frac{3\pi x}{l} + \frac{1}{5^2} \cos \frac{5\pi x}{l} + \dots \right)$
When x lies between $\pm \pi$ and p is not an integer, prove that
$\sin px = \frac{2}{\pi} \sin p\pi \left(\frac{\sin x}{1^2 - p^2} - \frac{2\sin 2x}{2^2 - p^2} + \frac{3\sin 3x}{3^2 - p^2} - \dots \right)$
Find the Fourier series for the function $f(x) = e^{ax}$ in $(-l, l)$
Half range sine and cosine series of $f(x) = 2x - 1$ in (0,1)
Half range sine and cosine series of x^2 in $(0, \pi)$
Find Half range sine and cosine series for $f(x) = (x-1)^2$ in $(0,1)$
Attempt the following.

	If $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ find A ³ and A ⁻¹ using Cayley Hamilton Theorem.
	Show that the matrix $\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1+i\\ 1-i & -1 \end{bmatrix}$ is unitary.
Q.23	Attempt the following.
	Using Cayley-Hamilton theorem, find the inverse of $\begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$.
	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I = 0$, Where I is a unit matrix of second order.
Q.24	Attempt the following.
	Define Hermitian matrix. If $A = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix}$ show that AA^* is a Hermitian matrix.
	Using Gauss –Jordan Method, find the inverse of $\begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.
Q.25	Find the eigenvalues & eigenvectors of the following matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.

r	
Q.26	Find the eigenvalues & eigenvectors of the following matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.
Q.27	
	Attempt the following.
	Find A ⁻¹ by Gauss Jordan Method, where A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$.
	Find characteristic equation ,eigen value and eigen vectors of matrix A ifA= $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.
Q.28	
	If $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ find A ⁻¹ using Cayley Hamilton Theorem.
Q.29	
	If $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ find A ⁻¹ using Cayley Hamilton Theorem.
Q.30	
	Verify cayley-Hamilton theorem for the matrix <i>A</i> , where $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

Q.31	
	Verify cayley-Hamilton theorem for the matrix <i>A</i> , where $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$
Q.32	
	Verify cayley-Hamilton theorem for the matrix <i>A</i> , where $A = \begin{bmatrix} 3 & 2 & 4 \\ 4 & 3 & 2 \\ 2 & 4 & 3 \end{bmatrix}$
Q.33	
	Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$
Q.34	
	Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$
Q.35	
	Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$
Q.36	
	Attempt the following.
	Prove that the matrix $A = \begin{bmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i) \end{bmatrix}$ ia unitary and find A^{-1} .
	Show that $A = \begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$ is a Hermitian matrix.

Q.37	
	Attempt the following.
	Attempt the following.
	Show that the matrix $A = \begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha - i\gamma \end{bmatrix}$ is unitary matrix, if
	$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1.$
Q.38	
	Show that every square matrix can be uniquely expressed as $P+iQ$, where P
	and <i>Q</i> are Hermitian matrices.
Q.39	Solve the following equations :
	(a) $(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ (b) $(D^2 + D) y = x^2 + 2x + 4$
	(a) (b - 2) y = b(c - 3)(2x + x) (b) (b - b) y = x + 2x + 4
Q.40	Solve the following equations :
	(a) $(D^2 + 1) y = x^2 \cos x$ (b) $(D^2 + 1) y = e^{2x} + \cosh 2x + x^3$
Q.41	Solve the following equations :
	(a) $(D^4 + 2D^2 + 1)y = x^2 \cos^2 x$ (b) $(D^2 + 2)y = e^{-2x} + \cos 3x + x^2$
Q.42	Solve the following equations :
	(a) $(D^2 + 2D + 1) y = x e^x sinx$ (b) $(D^2 - 9) y = e^{3x} cos 2x$
Q.43	Solve the following equations :
	(a) $(D - 2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ (b) $(D^3 + 8) y = x^4 + 2x + 1$
Q.44	Solve the following equations :
	(a) $(D^2 - 1) y = x \sin 3x + \cos x$ (b) $(D^2 - 4D + 4) y = 2e^x + \cos 2x + x^3$
Q.45	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$.
Q.46	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = ((\log x) \sin(\log x) + 1)/x$

-	
Q.47	Solve: $(3x+2)\frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1.$
Q.48	Solve: $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2 \sin(\log x)$.
Q.49	Solve: $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log x.$
Q.50	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} + y = \sec x$.
Q.51	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} + y = \tan x$.
Q.52	Solve by using method of variation of parameters: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$
Q.53	The charge q on a plate of a condenser C is given by $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E \sin pt$ the
	circuit is tuned to resonance so that $p^2 = \frac{1}{LC}$ if initially the current i and charge q
	be zero show that for small value of $\frac{R}{L}$,the current in the circuit at time t is given by
	$\left(\frac{Et}{2L}\right)\sin pt .$
Q.54	Solve the following simultaneous equations: $\begin{array}{c} Dx + y = \sin t \\ Dy + x = \cos t \end{array}$; where $D = \frac{d}{dt}$
	given that when t =0 ,x =1 and y = 0.
Q.55	Solve the following simultaneous equations: $\begin{array}{l} Dx + y = e^t \\ Dy + x = e^{-t} \end{array}$; where $D = \frac{d}{dt}$

Q.56	Form the partial differential equation of following:
	(a) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ (b) $z = f(x+ct) + g(x-ct)$
Q.57	Form the partial differential equation of following:
	(a) $2z = a^2 x^2 + b^2 y^2$ (b) $z = x + y + f(xy)$
Q.58	Form the partial differential equation of following:
	(a) $z = (x^2 + a)(y^2 + b)$ (b) $F(xy+z^2, x + y + z) = 0$
Q.59	Solve following partial differential equations :
	(a) $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$ (b) $x(y - z)p + y(z - x)q = z(x - y)$
Q.60	Solve following partial differential equations :
	(a) $py + qx = pq$ (b) $z = px + qy + 2\sqrt{pq}$
Q.61	Solve following partial differential equations :
	(a) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos y + xy$ (b) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \cos x \cos 2y$
Q.62	Solve following partial differential equations :
	(a) $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+4y}$ (b) $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^3 + e^{x+2y}$
Q.63	(a) Solve: $\frac{\partial^2 z}{\partial x \partial y} = e^{-y} \cos x$, given that $z = 0$ when $y = 0$ and $\frac{\partial z}{\partial y} = 0$ when $x = 0$
	(b) Solve: $\frac{\partial^2 z}{\partial x^2} = z$ given that $z = e^y$ and $\frac{\partial z}{\partial x} = e^{-y}$ when $x = 0$
Q.64	Solve: $\frac{\partial z}{\partial x} = 2 \frac{\partial z}{\partial y} + z$ where z (x , 0) = 8 e ^{-5x} using method of separation of variables.
Q.65	Solve: $3\frac{\partial z}{\partial x} + 2\frac{\partial z}{\partial y} = 0$, where $z(x, 0) = 4e^{-x}$ by using method of separation of

	variables.
Q.66	Solve: $\frac{\partial z}{\partial x} = 4 \frac{\partial z}{\partial y}$ where $z(0, y) = 8 e^{-3y}$ using method of separation of variables.
Q.67	Find the series solution of the differential equation $x\frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 0$ Solve the following equation in power series $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$
Q.68	Solve the following equation in power series $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$
Q.69	Solve in series in differential equation $\frac{d^2y}{dx^2} + xy = 0$
Q.70	Solve in series in differential equation $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} - y = 0$ solve in series the differential equation $\frac{d^2 y}{dx^2} + 4y = 0$
Q.71	solve in series the differential equation $\frac{d^2y}{dx^2} + 4y = 0$
Q.72	Attempt the following
	 Derive Cauchy –Riemann equations for complex function w = f(z) in polar form.
	2) Define harmonic function, Show that $u = \frac{1}{2}\log(x^2 + y^2)$ is harmonic and
0.72	determine its conjugate function.
Q.73	Attempt the following
	1) Derive Cauchy-Rieman equation for a complex function $W = f(z)$ In polar
	form .Hence deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$
	2) If $w = u + iv$ represent the complex potential function for an electric field and $u = 3x^2y - y^3$, determine the function v.
Q.74	Attempt the following
	1) If f(z) is analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$
	2) Evaluate $\int_{0}^{1+i} (x^2 - iy) dz$ along the path $(i)y = x(ii)y = x^2$
Q.75	Attempt the following
	1) Find the image of infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$
	also show the region graphically.

	Define line integral .Evaluate $\int_{0}^{3+i} z^2 dz$ along (i) the line $y = \frac{x}{3}$; (ii) the 2)
	parabola $x = 3y^2$
Q.76	Attempt the following
	0 - + 2
	1) Define bilinear transformation, Show that the transformation $w = \frac{2z+3}{z-4}$
	maps the circle onto the straight line $4u + 3 = 0$
	2) State Cauchy integral theorem and Cauchy integral formula. Evaluate
	$ \prod_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz $, where $c: z = 3$
	$\lim_{z} (z-1)(z-2) \qquad \text{where} \qquad \qquad$
Q.77	Attempt the following
	1) Determine the analytic function whose real part is $u = e^{-x}(x \sin y - y \cos x)$.
	2) Find the Bi-linear transformation, which maps the points $z = -1, i, 1$ into the
	points $w = 1, i, -1$.
Q.78	Attempt the following
	1) Find the Bi-linear transformation which maps the points $z = 1, i, -i$ into the
	Points $w = 0, 1, \infty$.
	2) Use Cauchy's integral formula to evaluate $\int_{C} \frac{e^{2z}}{(z+1)^4} dz$, where C is the circle
	z =2 .
Q.79	Attempt the following
	1) Prove that $f(z) = e^{2z}$ is analytic every in the plane and find its derivative.
	2) Find the image of $ z-2i =2$ under the mapping $w = \frac{1}{z}$
Q.80	Attempt the following
	2+3 <i>i</i>
	1) Evaluate $\int_{1-i} (z^2 + z) dz$ along the line joining the points (1,-1) and (2,3).
	2) Evaluate $\oint_C \frac{2z+1}{z^2+z} dz$; where <i>C</i> is $ z = \frac{1}{2}$.
Q.81	Attempt the following
	1) If $w = u + iv$ represent the complex potential function for an electric field and $u = 3x^2y - y^3$, determine the function v.
	ana u = 5x y - y, accommente the function v .

	• ² ₇ +1
	2) State the Residue theorem and evaluate $\iint_C \frac{2z+1}{(2z-1)^2} dz$, where C is the circle
	z =1.
Q.82	Attempt the following
	1) Prove that $f(z) = e^{2z}$ is analytic every in the plane and find its derivative.
	2) Expand $f(z) = \frac{z}{(z+1)(z+2)}$ about $z = -2$.
Q.83	Attempt the following
	1) Evaluate $\int_{0}^{3+i} z^2 dz$ along (i) the line $y = \frac{x}{3}$ (ii) the parabola $x = 3y^2$
	2) Find the image of the upper half plane under the transformation $w = \frac{z}{i-z}$.
Q.84	Attempt the following
	1) Find the Bi-linear transformation which maps the points $z = 1, i, -i$ into the
	Points $w = 0, 1, \infty$.
	2) Determine the analytic function whose real part is $y + e^x \cos y$.
Q.85	Attempt the following
	1) Evaluate $\int_{C} \frac{z^2 + 1}{z(2z+1)} dz$ where C is $ z = 1$.
	2) Under the transformation $w = \frac{1}{z}$ find the image of $x^2 - y^2 = 1$.
Q.86	Attempt the following
	1) Find the analytic function whose imaginary part is $e^x \sin y$
	2) Under the transformation $w = \frac{1}{z}$ find the image of $ z - 2i = 2$.
Q.87	Attempt the following
	1) Evaluate $\int_{C} \frac{z^2 + 1}{z(2z+1)} dz$ where C is $ z = 1$.
	2) Under the transformation, $w = \frac{1}{z}$ find the image of $x^2 - y^2 = 1$.
Q.88	Evaluate: (i) $\iint_{c} \frac{e^{2z}}{(z+1)^4} dz$; where $c: z = 4$

(ii)
$$\iint_{c} \frac{e^{z}}{(z+1)^{4}(z-2)} dz$$
; where $c: |z-1| = 3$